A novel cancer-germline transcript carrying pro-metastatic miR-105 and TET-targeting miR-767 induced by DNA hypomethylation in tumors
نویسندگان
چکیده
Genome hypomethylation is a common epigenetic alteration in human tumors, where it often leads to aberrant activation of a group of germline-specific genes, commonly referred to as "cancer-germline" genes. The cellular functions and tumor promoting potential of these genes remain, however, largely uncertain. Here, we report identification of a novel cancer-germline transcript (CT-GABRA3) displaying DNA hypomethylation-dependent activation in various tumors, including melanoma and lung carcinoma. Importantly, CT-GABRA3 harbors a microRNA (miR-105), which has recently been identified as a promoter of cancer metastasis by its ability to weaken vascular endothelial barriers following exosomal secretion. CT-GABRA3 also carries a microRNA (miR-767) with predicted target sites in TET1 and TET3, two members of the ten-eleven-translocation family of tumor suppressor genes, which are involved in the conversion of 5-methylcytosines to 5-hydroxymethylcytosines (5hmC) in DNA. Decreased TET activity is a hallmark of cancer; here, we provide evidence that aberrant activation of miR-767 contributes to this phenomenon. We demonstrate that miR-767 represses TET1/3 mRNA and protein expression and regulates genomic 5hmC levels. Additionally, we show that high CT-GABRA3 transcription correlates with reduced TET1 mRNA levels in vivo in lung tumors. Together, our study identified a cancer-germline gene that produces microRNAs with oncogenic potential. Moreover, our data indicate that DNA hypomethylation in tumors can contribute to reduced 5hmC levels via activation of a TET-targeting microRNA.
منابع مشابه
miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer
Objective(s): Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. Materials and Methods:We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the c...
متن کاملmiR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer.
OBJECTIVES Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. MATERIALS AND METHODS We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the cor...
متن کاملCancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis.
Cancer-secreted microRNAs (miRNAs) are emerging mediators of cancer-host crosstalk. Here we show that miR-105, which is characteristically expressed and secreted by metastatic breast cancer cells, is a potent regulator of migration through targeting the tight junction protein ZO-1. In endothelial monolayers, exosome-mediated transfer of cancer-secreted miR-105 efficiently destroys tight junctio...
متن کاملMicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1.
Systemic lupus erythematosus is a complex autoimmune disease caused by genetic and epigenetic alterations. DNA methylation abnormalities play an important role in systemic lupus erythematosus disease processes. MicroRNAs (miRNAs) have been implicated as fine-tuning regulators controlling diverse biological processes at the level of posttranscriptional repression. Dysregulation of miRNAs has bee...
متن کاملThe role of promoter DNA methylation of six cancer-associated miRNA genes in ovarian cancer development and progression
DNA methylation of promoter CpG islands and interactions between microRNAs and messenger RNAs of target genes are considered two crucial mechanisms for gene and pathway deregulation in malignant tumors. Methylation was analyzed for the large group of tumor-suppressor microRNA genes in various malignancies, but in ovarian tumors, it was not studied extensively yet. Our goal was to identify novel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014